Selection of Sensors for Hydro-Active Suspension System of Passenger Car With Input–Output Pairing Considerations

Author:

Sarshari Ehsan1,Sedigh Ali Khaki2

Affiliation:

1. M.S. Student Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19991–43344, Iran e-mail:

2. Professor Department of Electrical and Computer Engineering, K. N. Toosi University of Technology, Tehran 16315–1355, Iran e-mail:

Abstract

With respect to weight, energy consumption, and cost constraints, hydro-active suspension system is a suitable choice for improving vehicle ride comfort while keeping its handling. The aim of sensors selection is determining number, location, and type of sensors, which are the best for control purposes. Selection of sensors is related to the selection of measured variables (outputs). Outputs selection may limit performance and also affect reliability and complexity of control systems. In the meanwhile, hardware, implementation, maintenance, and repairing costs can be affected by this issue. In this study, systematic methods for selecting the viable outputs for hydro-active suspension system of a passenger car are implemented. Having joint robust stability and nominal performance of the closed loop is the main idea in this selection. In addition, it is very important to use these methods as a complementation for system physical insights, not supersedes. So, in the first place the system is described and the main ideas in ride comfort control are addressed. An 8 degrees of freedom model of vehicle with passive suspension system is derived and validated. Both linear and nonlinear models of the car which is equipped with hydro-active subsystem are derived. After selecting the outputs, for benefiting from minimum loop interactions, the control configuration is systematically determined. The main goal of selecting control configuration is assessing the possibility of achieving a decentralized control configuration. Finally, the system behavior is controlled by a decentralized proportional–integral–differential (PID) controller. The results indicate the efficiency of the controlled hydro-active suspension system in comparison with the passive system.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference37 articles.

1. Critique of Chemical Process Control Theory;AIChE J.,1973

2. Integrated Plant Control: A Solution at Hand or a Research Topic for the Next Decade;CPC-II,1982

3. Transmission Zeros Assignment for Linear Multivariable Plants,1991

4. A Quantitative Approach to the Selection and Partitioning of Measurements and Manipulations for the Control of Complex Systems;Presentation at Caltech Control Workshop,1989

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3