Detailed Experimental Studies of Flow in Large Scale Brush Seal Model and a Comparison With CFD Predictions

Author:

Chen L. H.1,Wood P. E.1,Jones T. V.1,Chew J. W.2

Affiliation:

1. Department of Engineering Science, University of Oxford, Parks Road, Oxford, United Kingdom

2. Mechanical Science Group, Rolls-Royce plc. Moor Lane, Derby, United Kingdom

Abstract

A five times scale model of an engine brush seal has been manufactured. The bristle stiffness and pressure were chosen to satisfy close similarity of the relevant non-dimensional parameters, and the choice of parameters is described. The comparison of flow characteristics for the model seal and an engine seal confirmed the non-dimensional similarity. Detailed pressure measurements were performed within the bristle pack by employing hollow bristles. This novel measurement allowed insight to be obtained into the operation of both clearance and interference seals. In particular, the measured pressure variation in the region of the bristle tips was significant. The deflection of the bristles was determined by comparing the bristle tip pressures with the static pressures along the shaft. Hence the compaction of the pack in this region was found directly. A numerical modeling of brush seals employing anisotropic flow resistance has been developed. Predictions were compared with the measured pressure distributions within the pack. This enabled sensible selection of the pack resistance distribution to be made. Although uniform anisotropic resistance throughout the pack gave reasonable flow rate characteristics, the pressure distribution was not reproduced. A variation of resistance coefficient consistent with the observed compaction was required to give a solution comparable with the experiments. [S0742-4795(00)01703-8]

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3