Effects of Electric Fields on Stabilized Lifted Propane Flames

Author:

Hutchins Andrew R.1,Reach William A.1,Kribs James D.1,Lyons Kevin M.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695

Abstract

The effects that various charged electrodes, and associated electric fields, have on lifted propane flames have been investigated. Two electrodes were used to provide an electric field with potentials ranging from 0 to 11,000 V. The primary electrode was around the flame and the secondary electrode was the fuel nozzle. Electrode polarity and primary electrode location with various flame field locations (near, mid, far) were varied, resulting in a variety of flame behavior. Results show that the body force resultant from the bulk flow of formed ions, from a positively charged fuel nozzle, and grounded ring electrode, will increase flame liftoff height and, eventually, cause blowout. However, for the opposite polarity (positively charged ring electrode and grounded fuel nozzle), the flame progresses toward reattachment with increasing potentials. Observing the narrow window of flame blowout or reattachment (varying with polarity), it was observed that the lifted flame height fluctuations were increased with the presence of the grounded ring electrode, but reduced when the polarity was shifted to positive configuration (positively charged primary electrode). Flame hysteresis was observed when the ring electrode was positively charged and it was found that the hysteresis regime increased when the potential of the ring electrode was increased to 1500 V but had little changes at lower potentials. While the ring electrode was positively charged, a distinct hole was observed in the center of the flame. Several images are presented that show these flame holes that are present when the electrodes are charged.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3