Experimental Analysis of Chromium Molybdenum Coatings Under Mixed Elastohydrodynamic Lubrication for Film Thickness, Friction, and Wear Characterizations

Author:

Pickens David1,Liu Zhong1,Nishino Takayuki2,Wang Q. Jane1

Affiliation:

1. Department of Mechanical Engineering, Center for Surface Engineering and Tribology, Northwestern University, Evanston, IL 60208 e-mail:

2. Mazda Motor Corporation, 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan e-mail:

Abstract

This research aims to evaluate the tribological performance of chromium molybdenum (CrMo) coatings under point and line-contact mixed elastohydrodynamic lubrication. This article studies the coatings made from two different methods and treated in an electrifying process of different durations, which produced microchannels and micropockets in the surfaces. The resulting surface topographies had varying impacts on lubricant film thickness, friction, and wear. Root-mean-square roughness (Sq) and porosity are used to characterize the surfaces and their performances in terms of film thickness, friction, and wear. The results suggest that the coated surfaces with a lower Sq and porosity density tended to yield higher film thickness. However, their influence on friction is complicated; lower roughness and porosity are preferred for lower wear, but certain levels of small roughness and surface pores may help to reduce boundary lubrication friction when compared with the frictional behaviors of porosity-free surfaces and those with higher roughness and higher porosity.

Funder

Mazda Foundation

Materials Research Science and Engineering Center, Harvard University

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3