Smoothing Rotary Axes Movements for Ball-End Milling Based on the Gradient-Based Differential Evolution Method

Author:

Lu Yao-An1,Wang Cheng-Yong2,Sui Jian-Bo2,Zheng Li-Juan2

Affiliation:

1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China e-mail:

2. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Ball-end milling is widely used in five-axis high-speed machining. The abrupt change of tool orientations or rotary axes movements will scrap the workpiece. This research presents a smoothing method of rotary axes movements within the feasible domains of the rotary-axes space. Most existing smoothing methods of tool orientation or rotary axes movements employ the Dijkstra's shortest path algorithm. However, this algorithm requires extensive computations if the number of the cutter locations is large or the sampling resolution in the feasible regions is high. Moreover, jumps in the results obtained with the Dijkstra's shortest path algorithm may occur, because the optimization problem has to be converted from a continuous problem into a discrete problem when using this algorithm. The progressive iterative approximation (PIA) method incorporating smoothness terms is established as a gradient-based optimization method to smooth the rotary axes movements in this research. Then a gradient-based differential evolution (DE) algorithm, combining the global exploration feature of the DE algorithm and the local searching ability of the gradient-based optimization method, is developed to solve the smoothing model. The validity and effectiveness of the proposed approach are confirmed by numerical examples.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3