Overload in a Rat In Vivo Model of Synergist Ablation Induces Tendon Multiscale Structural and Functional Degeneration

Author:

Bloom Ellen T.1,Lin Lily M.1,Locke Ryan C.23,Giordani Alyssa1,Krassan Erin1,Peloquin John M.1,Silbernagel Karin Grävare4,Parreno Justin5,Santare Michael H.6,Killian Megan L.7,Elliott Dawn M.1

Affiliation:

1. Department of Biomedical Engineering, University of Delaware , Newark, DE 19716

2. Department of Orthopaedic Surgery, University of Pennsylvania , Philadelphia, PA 19104 ; , Philadelphia, PA 19104

3. Translational Musculoskeletal Research Center, CMCVAMC , Philadelphia, PA 19104 ; , Philadelphia, PA 19104

4. Department of Physical Therapy, University of Delaware , Newark, DE 19716

5. Department of Biological Sciences, University of Delaware , Newark, DE 19716

6. Department of Mechanical Engineering, University of Delaware , Newark, DE 19716

7. Department of Orthopaedic Surgery, University of Michigan , Ann Arbor, MI 48104

Abstract

AbstractTendon degeneration is typically described as an overuse injury with little distinction made between magnitude of load (overload) and number of cycles (overuse). Further, in vivo, animal models of tendon degeneration are mostly overuse models, where tendon damage is caused by a high number of load cycles. As a result, there is a lack of knowledge of how isolated overload leads to degeneration in tendons. A surgical model of synergist ablation (SynAb) overloads the target tendon, plantaris, by ablating its synergist tendon, Achilles. The objective of this study was to evaluate the structural and functional changes that occur following overload of plantaris tendon in a rat SynAb model. Tendon cross-sectional area (CSA) and shape changes were evaluated by longitudinal MR imaging up to 8 weeks postsurgery. Tissue-scale structural changes were evaluated by semiquantified histology and second harmonic generation microscopy. Fibril level changes were evaluated with serial block face scanning electron microscopy (SBF-SEM). Functional changes were evaluated using tension tests at the tissue and microscale using a custom testing system allowing both video and microscopy imaging. At 8 weeks, overloaded plantaris tendons exhibited degenerative changes including increases in CSA, cell density, collagen damage area fraction (DAF), and fibril diameter, and decreases in collagen alignment, modulus, and yield stress. To interpret the differences between overload and overuse in tendon, we introduce a new framework for tendon remodeling and degeneration that differentiates between the inputs of overload and overuse. In summary, isolated overload induces multiscale degenerative structural and functional changes in plantaris tendon.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3