Probabilistic Prediction of Crack Depth Distributions Observed in Structures Subjected to Thermal Fatigue

Author:

Asayama Tai1,Takasho Hideki2,Kato Takehiko2

Affiliation:

1. Japan Atomic Energy Agency, 4002 Narita, Oarai, Ibaraki 311-1393, Japan

2. Joyo Industry, Ltd., 4002 Narita, Oarai, Ibaraki 311-1393, Japan

Abstract

The application of risk-based technologies not only to in-service inspections but also to the design of components and systems, encompassing a plant life-cycle, is the way to be pursued for the improvement of design of new reactors such as fast breeder reactors. When doing so, it is necessary to develop an analytical method that is capable of estimating failure probabilities without a failure database that can only be established on the long-time accumulation of operational experiences. The prediction method should estimate failure probabilities based on actual mechanisms that cause failure. For this purpose, this study developed a structural reliability evaluation method using probabilistic prediction of crack depth distributions for thermal fatigue, which is one of representative failure modes to be prevented in components of nuclear plants. This method is an extension of probabilistic fracture mechanics approach but is capable of modeling crack initiation, crack propagation, and crack depth density distribution at a given cycle. To verify the methodology, crack depth distribution observed in thermal fatigue test specimens was evaluated, and it was shown that the method could reproduce the observed crack depth distributions fairly well. This is considered to explore the possibility that probabilistic fracture mechanics approach can be verified by experiments, which was deemed impossible so far. Further improvement such as explicit implementation of interaction mechanisms between adjacent cracks will allow this methodology to be applied to the procedure of optimization of in-service inspection planning, as well as to the optimization of safety factors in component design of nuclear plants.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference14 articles.

1. System Based Code: Principal Concept;Asada

2. System Based Code: Basic Structure;Asada

3. Development of the System Based Code for Fast Breeder Reactors and Light Water Reactors: Basic Scheme;Asayama

4. Development of the System Based Code for Fast Breeder Reactors and Light Water Reactors: Basic Scheme;Asayama

5. Development of the System Based Code for Structural Integrity of FBRs;Asayama;PVP (Am. Soc. Mech. Eng.)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3