Sequential Modeling and Knowledge Source Integration for Identifying the Structure of a Bayesian Network for Multistage Process Monitoring and Diagnosis

Author:

Mondal Partha Protim1,Ferreira Placid Matthew2,Kapoor Shiv Gopal1,Bless Patrick N.3

Affiliation:

1. University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, , Urbana, IL 61801

2. University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering , Urbana, IL 61801

3. Intel Corporation , Chandler, AZ 85226

Abstract

Abstract As a popular applied artificial intelligence tool, Bayesian networks are increasingly being used to model multistage manufacturing processes for fault diagnosis purposes. However, the major issue limiting the practical adoption of Bayesian networks is the difficulty of learning the network structure for large multistage processes. Traditionally, Bayesian network structures are learned either with the help of domain experts or by utilizing data-driven structure learning algorithms through trial and error. Both approaches have their limitations. On the one hand, the expert-driven approach is costly, time-consuming, cumbersome for large networks, and susceptible to errors in assessing probabilities; on the other hand, data-driven approaches suffer from noise, biases, and inadequacy of training data and often fail to capture the physical causal structure of the data. Therefore, in this article, we propose a Bayesian network structure learning approach where popular manufacturing knowledge sources like the failure mode and effect analysis (FMEA) and hierarchical variable ordering are used as structural priors to guide the data-driven structure learning process. In addition, to introduce modularity and flexibility into the learning process, we present a sequential modeling approach for structure learning so that large multistage networks can be learned stage by stage progressively. Furthermore, through simulation studies, we compare and analyze the performance of the knowledge source–based structurally biased networks in the context of multistage process fault diagnosis.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3