The Trailing Edge Loss of Transonic Turbine Blades

Author:

Denton J. D.1,Xu L.2

Affiliation:

1. Whittle Laboratory, Cambridge University Cambridge, England CB3 OEL

2. Beijing University of Aeronautics & Astronautics, Beijing, China

Abstract

Trailing edge loss is one of the main sources of loss for transonic turbine blades, contributing typically 1/3 of their total loss. Transonic trailing edge flow is extremely complex, the basic flow pattern is understood but methods of predicting the loss are currently based on empirical correlations for the base pressure. These correlations are of limited accuracy. Recent findings that the base pressure and loss can be reasonably well predicted by inviscid Euler calculations are justified and explained in this paper. For unstaggered choked blading, it is shown that there is a unique relationship between the back pressure and the base pressure and any calculation that conserves mass, energy and momentum should predict this relationship and the associated loss exactly. For realistic staggered blading, which operates choked but with subsonic axial velocity, there is also a unique relationship between the back pressure and the base pressure (and hence loss) but the relationship cannot be quantified without knowing a further relationship between the base pressure and the average suction surface pressure downstream of the throat. Any calculation that conserves mass, energy and momentum and also predicts this average suction surface pressure correctly will again predict the base pressure and loss. Two-dimensional Euler solutions do not predict the suction surface pressure exactly because of shock smearing but nevertheless seem to give reasonably accurate results. The effects of boundary layer thickness and trailing edge coolant ejection are considered briefly. Coolant ejection acts to reduce the mainstream loss. It is shown that suction surface curvature downstream of the throat may be highly beneficial in reducing the loss of blades with thick trailing edges operating at high subsonic or low supersonic outlet Mach numbers.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3