The Effects of Unsteadiness and Compressibility on the Interaction Between Hub Leakage and Mainstream Flows in High-Pressure Turbines

Author:

Popović Ivan1,Hodson Howard P.2,Janke Erik,Wolf Torsten3

Affiliation:

1. e-mail:

2. Whittle Laboratory, University of Cambridge, Cambridge, UK

3. Rolls-Royce Deutschland, Dahlewitz, Germany

Abstract

This paper investigates the effects of compressibility and unsteadiness due to the relative blade row motion and their importance in the interaction between hub leakage (purge) and mainstream flows. First, the challenges associated with the blade redesign for low-speed testing are described. The effects of Mach number are then addressed by analyzing the experiments in the low-speed linear cascade equipped with the secondary airflow system and computations performed on the low- and high-speed blade profiles. These results indicate that the compressibility does not significantly affect the interaction between the leakage and mainstream flows despite a number of compromises made during the design of the low-speed blade. This was due to the fact that the leakage–mainstream interaction takes place upstream of the blade throat where the local Mach numbers are still relatively low. The analysis is then extended to the equivalent full-stage unsteady computations. The periodic unsteadiness resulting from the relative motion of the upstream vanes appreciably affected the way in which the leakage flow is injected and the rotor flow field in general. However, the time-average flow field was still found to be dominated by the rotor blade's potential field. For the present test arrangement, the unsteady effects were not very detrimental and caused less than a 10% increase in the losses due to the leakage injection relative to the steady calculations.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3