A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

Author:

Leishear Robert A.1

Affiliation:

1. Savannah River National Laboratory, Aiken, SC 29808 e-mail:

Abstract

Hydrogen explosions may occur simultaneously with fluid transients' accidents in nuclear facilities, and a theoretical mechanism to relate fluid transients to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in piping systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the piping system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany (Fig. 1Fig. 1Hydrogen explosion damage in nuclear facilities Antaki, et al. [9,10–12] (ASME, Task Group on Impulsively Loaded Vessels, 2009, Bob Nickell)). Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism. In fact, this explosion mechanism may be pertinent to explosions in major nuclear accidents, and a similar explosion mechanism is also possible in oil pipelines during off-shore drilling.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference18 articles.

1. Nuclear Energy Agency, Committee on Safety of Nuclear Installations, NEA/CSNI/R, OECD Nuclear Energy Agency;“Recurring Events,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ignition of stoichiometric hydrogen-oxygen by water hammer;Proceedings of the Combustion Institute;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3