Online Monitoring System for Stand-Alone Photovoltaic Applications—Analysis of System Performance From Monitored Data

Author:

Torres M.1,Muñoz F. J.1,Muñoz J. V.1,Rus C.1

Affiliation:

1. IDEA Research Group, Department of Automation and Electronics Engineering, Polytechnic School of University of Jaén, Campus de Las Lagunillas, s/n, CP 23071, Jaén, Spain

Abstract

The Guidelines for the Assessment of Photovoltaic Plants provided by the Joint Research Centre (JRC) and the International Standard IEC 61724 recommend procedures for the analysis of monitored data to asses the overall performance of photovoltaic (PV) systems. However, the latter do not provide a well adapted method for the analysis of stand-alone photovoltaic systems (SAPV) with charge regulators without maximum power point tracker (MPPT). In this way, the IDEA Research Group has developed a new method that improves the analysis performance of these kinds of systems. Moreover, it has been validated an expression that compromises simplicity and accuracy when estimating the array potential in this kind of systems. SAPV system monitoring and performance analysis from monitored data are of great interest to engineers both for detecting a system malfunction and for optimizing the design of future SAPV system. In this way, this paper introduces an online monitoring system in real time for SAPV applications where the monitored data are processed in order to provide an analysis of system performance. The latter, together with the monitored data, are displayed on a graphical user interface using a virtual instrument (VI) developed in LABVIEW®. Furthermore, the collected and monitored data can be shown in a website where an external user can see the daily evolution of all monitored and derived parameters. At present, three different SAPV systems, installed in the Polytechnic School of University of Jaén, are being monitorized and the collected data are being published online in real time. Moreover, a performance analysis of these stand-alone photovoltaic systems considering both IEC 61724 and the IDEA Method is also offered. These three systems use the charge regulators more widespread in the market. Systems #1 and #2 use pulse width modulation (PWM) charge regulators, (a series and a shunt regulator, respectively), meanwhile System #3 has a charge regulator with MPPT. This website provides a tool that can be used not only for educational purposes in order to illustrate the operation of this kind of systems but it can also show the scientific and engineering community the main features of the system performance analysis methods mentioned above. Furthermore, it allows an external user to download the monitored and analysis data to make its own offline analysis. These files comply with the format proposed in the standard IEC 61724. The SAPV system monitoring website is now available for public viewing on the University of Jaén. (http://voltio.ujaen.es/sfa/index.html).

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference15 articles.

1. Commission of the European Communities, 1997, Photovoltaic System Monitoring, Documents A & B, version 4.3 ed., Guidelines for the Assessment of Photovoltaic Plants.

2. A New Method Based on Charge Parameters to Analyse the Performance of Stand-Alone Photovoltaic Systems;Muñoz;Sol. Energy Mater. Sol. Cells

3. Estimation of the Potential Array Output Charge in the Performance Analysis of Stand-Alone Photovoltaic Systems Without MPPT (Case Study: Mediterranean Climate);Muñoz;Sol. Energy

4. IEEE Standard 1526-2003, 2004, “IEEE Recommended Practice for Testing the Performance of Stand-Alone Photovoltaic Systems,” IEEE, pp. 1–18.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3