Affiliation:
1. Electrical and Computer Engineering, Southern Illinois University, Edwardsville, IL 62026
Abstract
Abstract
A discrete-time-coupled state-dependent Riccati equation (CSDRE) control strategy is structured in this paper for synthesizing state feedback controllers satisfying the combined nonlinear quadratic regulator (NLQR) and H∞ robust control performance objectives. Under smoothness assumptions, the nonlinear plant dynamics can be formulated into state-dependent coefficient form through direct parameterization. By solving a pair of coupled state-dependent Riccati equations, the optimal stabilizing solutions can achieve inherent stability, nonlinear quadratic optimality, and H∞ disturbance attenuation performance. The established two-player Nash's game theory is utilized for developing both of the finite and infinite time optimal control laws. Furuta swing-up pendulum, a representative nonholonomic underactuated nonlinear system, is stabilized in real-time for validating the robustness and potential of proposed approach in mechatronics applications.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering