Fractional Coverage Model for the Adsorption and Removal of Gas Species and Application to Superlow Friction Diamond-Like Carbon

Author:

Dickrell P. L.1,Sawyer W. G.1,Erdemir A.2

Affiliation:

1. University of Florida, Mechanical Engineering Department, Gainesville, FL 32611, USA

2. Argonne National Laboratory, Energy Technology Division, Argonne, IL 60439, USA

Abstract

The frictional behavior of diamond-like carbon (DLC) films varies with environmental condition. One theory asserts that the cause of variations in the frictional performance is environmental contaminants adsorbing onto the DLC film surface. Testing of the frictional performance of DLC films in a pin-on-disk contact has mapped the transient behavior of the friction coefficient. A model for fractional coverage, based on the adsorption of environmental contaminants and their removal through the pin contact, is developed. The rate of adsorption is taken from Langmuir’s model [17], which is combined with the removal ratio from Blanchet and Sawyer [18]. The coefficient of friction is based on the average fractional coverage under the pin contact. The model also gives a closed-form expression for the steady-state fractional coverage. Model calculations compared favorably to the time progression of the friction coefficient for a series of earlier experiments on a superlow friction DLC coating [7], when the fractional removal term was allowed to increase with increasing sliding speed.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3