Affiliation:
1. Argonne National Laboratory, Reactor Analysis and Safety Division, Argonne, Ill.
Abstract
The penetration of a saturated liquid (a liquid at its freezing temperature) into a tube that is initially empty and maintained at a temperature below the freezing temperature of the liquid is treated theoretically and experimentally. A convenient approximate method is introduced which involves postulating a reasonable functional form for the instantaneous shape of the frozen layer along the tube wall. Graphical velocity-time and penetration distance-time curves are presented displaying the principal effects of a single dimensionless parameter. In the limit of negligible liquid inertia, shown to be relevant to high Prandtl number materials, a closed-form expression for the liquid penetration length is obtained. The expression compares well with the experimental results.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献