Cutting Dynamics in Machine Tool Chatter: Contribution to Machine-Tool Chatter Research—3

Author:

Kegg R. L.1

Affiliation:

1. Product Development Department, The Cincinnati Milling Machine Company, Cincinnati, Ohio

Abstract

This is one of four papers presented simultaneously on the general subject of chatter. This work is concerned with finding a representation of the dynamic metal-cutting process which is suitable for use in a linear closed-loop theory of stability of the system composed of the machine tool structure, the cutting process, and their means of combining. Measuring techniques for experimentally determining this behavior are discussed and some problems in the dynamic measurement of forces are explored. It is found that it is not at all sufficient to simply build a dynamometer whose lowest natural frequency is well beyond the range of interest. It is also shown that dynamic cross sensitivity can far exceed static cross sensitivity so that a more general technique for data correction developed in the present work must be used to calibrate dynamic force data. Results obtained to date with an oscillating tool and a flat uncut surface show that some phase, increasing with frequency, is always present between the dynamic cutting forces and the oscillatory uncut chip thickness. This phase is different for the two components of the resultant cutting force. It is felt that two mechanisms, both associated with the tool clearance flank, can explain most of the dynamic cutting effects found in testing.

Publisher

ASME International

Subject

General Medicine

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability prediction via parameter estimation from milling time series;Journal of Sound and Vibration;2023-07

2. Instantaneous Contact Area-Based Model for Shear Strength Sensitive Cutting Coefficients Characterization of Anisotropic Lpbf Parts;2023

3. Analytical and experimental stability analysis of AU4G1 thin-walled tubular workpieces in turning process;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2020-01-03

4. Experimental investigation of dynamic chip formation in orthogonal cutting;International Journal of Machine Tools and Manufacture;2019-10

5. Modeling of cutting forces in curvilinear peripheral milling process;The International Journal of Advanced Manufacturing Technology;2019-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3