On the Edge Singularity of the Actuator Disk Model

Author:

Chattot Jean-Jacques1

Affiliation:

1. Mechanical & Aerospace Engineering, University of California-Davis, Davis, CA 95616

Abstract

AbstractIn this technical brief, the classic actuator disk theory is revisited with a view to shed some light on the singularity of the flow at the edge of the disk where the vortex tube starts and where vorticity is generated. The study is carried out using small perturbation assumption in two-dimensions and simplified boundary conditions in all cases. The problem of the two-dimensional thin cambered plate with constant vorticity distribution is solved and the leading edge singularity is analyzed as it is believed to be relevant to the axisymmetric flow at the actuator disk edge. Next, the velocity components induced by the cylindrical vortex tube of constant vorticity are obtained via the Biot–Savart law and the near edge behavior is investigated. It is shown that the velocity components behavior is consistent with that of the thin cambered plate with constant loading, thus reinforcing the notion that the axisymmetric slip-line behaves as r − R ∝ −xlnx near the disk edge.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference15 articles.

1. On the Mechanical Principle of the Action of Propellers;Rankine;Trans. Inst. Naval Arch.,1865

2. On the Part Played in Propulsion by Differences in Fluid Pressure;Froude;Trans. Inst. Naval Arch.,1889

3. The Actuator Disk Theory – Steady and Unsteady Models;Chattot;ASME J. Solar Energy Eng.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3