Mechanism of Band Gaps in Self-Similar Triangular Lattice With Koch Fractal

Author:

Zhao Pengcheng1,Zhang Kai1,Zhao Cheng1,Deng Zichen1

Affiliation:

1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Abstract Fractal lattice is a kind of lattices with multifunctional physical characteristics and superior mechanical properties. The wave propagation of the triangular lattice with Koch fractal is calculated by the finite element method and Bloch theorem. The effects of the iteration number on the band gaps and the band edge modes are studied. The finite element software was used to simulate the dynamic response of the triangular lattice with Koch fractal for verifying the vibration suppression performance. The results show that the triangular lattice with Koch fractal can produce multiple and low-frequency band gaps. As an increase of the iteration number, the band gap gradually shifts to a lower frequency. By comparing and analyzing the band edge modes and the eigenmodes of Koch fractal, the mechanisms of the band gaps within the low-frequency ranges are analyzed and discussed in detail. Additionally, the band edge modes exhibit similar vibration modes. Finally, the simulation results of the finite lattice verify the broadband vibration suppression performance of the triangular lattice with Koch fractal. This work provides insights into the lattice dynamic behavior adjusted by Koch fractal, which is beneficial to the periodic lattice for suppressing vibration in engineering applications.

Funder

National Natural Science Foundation of China

Northwestern Polytechnical University

Publisher

ASME International

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3