Revisiting Theoretical Limits for One Degree-of-Freedom Wave Energy Converters

Author:

Tom Nathan M.1

Affiliation:

1. National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401

Abstract

Abstract This work revisits the theoretical limits of one degree-of-freedom wave energy converters (WECs). This work considers the floating sphere used in the OES Task 10 WEC modeling and verification effort for analysis. Analytical equations are derived to determine bounds on displacement amplitude, time-averaged power (TAP), and power-take-off (PTO) force. A unique result found shows that the TAP absorbed by a WEC can be defined solely by the inertial properties and radiation hydrodynamic coefficients. In addition, a unique expression for the PTO force was derived that provides lower and upper bounds when resistive control is used to maximize power generation. For complex conjugate control, this same expression only provides a lower bound, as there is theoretically no upper bound. These bounds assist in comparing the performance of the floating sphere if it were to extract energy using surge or heave motion. The analysis shows because of differences in hydrodynamic coefficients for each oscillating mode, there are different frequency ranges that provide better power capture efficiency. The influence of a motion constraint on TAP while utilizing a nonideal power take-off is examined and found to reduce the losses associated with bidirectional energy flow. The expression to calculate TAP with a nonideal PTO is modified by the electrical conversion efficiency and the ratio of the PTO spring and damping coefficients. The PTO spring and damping coefficients were separated in the expression, allowing for limits to be set on the PTO coefficients to ensure net power generation.

Funder

National Renewable Energy Laboratory

U.S. Department of Energy

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference31 articles.

1. Wave Power;Salter;Nature,1974

2. Ocean Wave Energy in the United States: Current Status and Future Perspectives;Lehmann;Renewable. Sustainable. Energy. Rev.,2017

3. A Review of Wave Energy Converter Technology;Drew;Proc. Inst. Mech. Eng., Part A: J. Power Energy,2017

4. Wec Technology Performance Levels (TPLs) – Metric for Successful Development of Economic Wec Technology;Weber,2013

5. Pelamis: Experience From Concept to Connectiony;Yemm;Philos. Trans. R. Soc. A,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3