Effect of Circumferential Grooves on the Aerodynamic Performance of an Axial Single-Stage Transonic Compressor

Author:

Mu¨ller Martin W.1,Schiffer Heinz-Peter1,Hah Chunill2

Affiliation:

1. Technische Universita¨t Darmstadt, Darmstadt, Germany

2. NASA Glenn Research Center, Cleveland, OH

Abstract

This paper reports on experimental and numerical investigations on circumferential grooves in an axial single-stage transonic compressor. Total pressure ratio and efficiency speedlines were taken at design speed and three off-design conditions. The experiments comprise four different configurations with deep and shallow grooves and variable coverage of the projected rotor axial chord. All casing treatments proved to have a beneficial effect on stall range while maintaining high levels of efficiency, even at off-design operation. Deep grooves extending almost to the trailing edge showed the biggest potential: the mass flow at stall inception for design speed could be strongly reduced, and the operating range could be enlarged by 56.1%. When three shallow grooves were applied to the compressor, the stage efficiency at design speed was shifted to slightly higher values. A possible explanation could be a favorable change in stator aerodynamics due to the reduction of corner separation. For a closer look into the physical effects of grooves on the tip leakage flow, a rotor-only CFD analysis has been carried out using a steady state calculation. A multi-block grid with approximately 1.2 million nodes was used. The numerical simulations reveal strong effects of circumferential grooves on the rotor flow field at tip. Mach-number contours, axial velocity distributions and particle traces for the smooth casing and six deep grooves are presented at stall mass flow. Compared to the smooth wall case, the treated casing significantly reduces blockage in the tip area and weakens the roll-up of the core vortex. These mechanisms prevent an early spillage of low momentum fluid into the adjacent blade passage and delay the onset of rotating stall.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3