Affiliation:
1. Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada e-mail:
2. Price Industries Limited, Winnipeg, MB R2K 3Z9, Canada e-mail:
Abstract
The objective of this paper is to investigate the effects of nozzle spacing on the mean velocity and higher-order turbulent statistics of free twin round jets produced from sharp contraction nozzles. The experiments were performed in an air chamber where four nozzle spacing ratios, S/d = 2.8, 4.1, 5.5, and 7.1, were investigated at a fixed Reynolds number of 10,000. A planar particle image velocimetry (PIV) system was used to conduct the velocity measurements. The results show that downstream of the potential core, a reduction in spacing ratio leads to an earlier and more intense interaction between the jets, indicated by enhanced half-velocity width spread rate in the inner shear layers and a significant rise of turbulent intensities and vorticity thickness along the symmetry plane. A reduction in spacing ratio, however, confines the ambient fluid entrainment along the inner shear layers leading to a reduced core jet velocity decay rate. The closer proximity of the jets also leads to the decrease of Reynolds stresses in the inner shear layers but not in the outer shear layers. The Reynolds stress ratios along the jet centerline reveal the highest anisotropy in the potential core region.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献