Tribological Properties of Multi-Walled Carbon Nanotube-Cr and Graphene Oxide-Cr Composite Coating

Author:

Chen Bo1,Liang Shenghu2,Lu Song2,Zou Kun34,Peng Yitian34,Lang Haojie1,Yi Wangmin5

Affiliation:

1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China e-mail:

2. Apex (Guangzhou) Tools & Orthopedics Co., Guangzhou 511356, China e-mail:

3. College of Mechanical Engineering;

4. Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Donghua University, Shanghai 201620, China e-mail:

5. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China e-mail:

Abstract

Chromium (Cr)-based coatings have been widely used to strengthen the friction reduction and wear resistance on various kinds of surface. Here, the stable aqueous dispersion of oxidized multi-walled carbon nanotube (MWCNT) and graphene oxide nanosheets (GOS) was obtained by ultrasonic oxidation treatment. Then, MWCNT-Cr and GOS-Cr composite coatings were prepared using the direct current electrochemical co-deposition process on 420 stainless steel in the electrolyte with the addition of MWCNT and GOS under different current density and temperature. The morphology, structure, hardness and tribological properties of MWCNT-Cr and GOS-Cr composite coating are comparatively studied using pure Cr coating as a baseline. The friction reduction performance of MWCNT-Cr and GOS-Cr composite coatings was improved at optimum current density and temperature. The anti-wear properties of MWCNT-Cr and GOS-Cr composite coatings were enhanced by uniform embedment of MWCNT and GOS in coatings increasing the hardness and lubricity. This study suggests that the introduction of oxidized MWCNT and GOS with good dispersion could enhance the wear resistance and friction reduction of pure Cr coating due to their excellent dispersion, mechanical, and lubricant properties.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3