Effect of layer addition on residual stresses of wire arc additive manufactured stainless steel specimens

Author:

Rouquette Sebastien1,Cambon Camille2,Bendaoud Issam2,Cabeza Sandra3,Soulié Fabien4

Affiliation:

1. 163 Rue Auguste Broussonnet Montpellier, Hérault 34095 France

2. 163 rue auguste broussonnet LMGC, University of Montpellier montpellier, occitanie 34095 France

3. 71, avenue des Martyrs - CS 20156 Institut Max von Laue - Paul Langevin Grenoble, 38042 France

4. 163 rue auguste broussonnet Lab. of Mechanical Engineering, University of Montpellier Montpellier, Occitanie 34095 France

Abstract

Abstract Residual stresses have been characterized in four Wire Arc Additive Manufacturing specimens with neutron diffraction technique. Firstly, two methods are investigated for obtaining the reference diffracted angle θ0 that is required for the computation of micro-strains and, thus, the stresses. θ0 was obtained using two approaches. The first one required a strain-free specimen in order to get directly the reference diffracted angles θ0 in three directions. The second one is based on the plane stress assumption to get θ0 indirectly by imposing that the normal stress was equal to zero. Both methods led to similar residual stress profiles for the 1-layer specimen what validated this approach for all specimens that did not have a strain-free specimen available. The second part of this work focused on the effect of addition of a new layer on residual stresses. The measurements showed that the longitudinal stress was tensile in the Heat Affected Zone (HAZ) and Fusion Zone (FZ) with a maximum value located at the parent material - layers interface where the thermal loadings were applied. A decrease of this maximum value from 257 MPa to 199 MPa appeared after deposition of a new layer which is due to some stress relaxation effect. Inside the parent material, a large zone presents compressive longitudinal stress up to -170 MPa. The bottom part of the parent material is under tensile stress likely due to its upward bending following the thermal contraction of the deposited layers during cooling to ambient temperature.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3