Aerodynamic Optimization of a Microturbine Inserted in a Magic-Angle Spinning System

Author:

Herzog Nicoleta1,Wilhelm Dirk2,Koch Stefan1,Purea Armin3,Osen David3,Knott Benno3,Engelke Frank3

Affiliation:

1. School of Engineering, Institute of Energy Systems and Fluid Engineering, Zurich University of Applied Sciences, Winterthur 8401, Switzerland e-mail:

2. School of Engineering, Institute of Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur 8401, Switzerland e-mail:

3. Bruker BioSpin GmbH, Rheinstetten 76287, Germany e-mail:

Abstract

The fluid dynamics of a microturbine system that is applied in a device for chemical and biological analysis—a so-called magic-angle spinning (MAS) probe—is investigated. The drive fluid is pressurized air at ambient temperature provided by nozzles aligned on an intake spiral, driving a Pelton-type microturbine. Computational fluid dynamics (CFD) simulations have been performed and compared with fluid dynamics measurements of the MAS system with 1.3 mm rotor diameter for spinning rates between 23 kHz and 67 kHz. The main optimization criteria of the MAS system are rotor speed and turbine stability and not primarily efficiency, which is standard for turbomachinery applications. In the frame of fabrication tolerances, a sensitivity study has been carried out by varying the nozzles diameter and the nozzle position relative to the rotor. The presented fluid dynamics study of the microturbine system includes the analysis of local fluid flow values such as velocity, temperature, pressure, and Mach number, as well as global quantities like forces and driven torque acting on the turbine. Comparison with the experimental results shows good agreement of the microturbine efficiency. Furthermore, the parameter study of the nozzle diameter reveals optimization potential for this high-speed microturbine system employing a smaller nozzle diameter.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3