Affiliation:
1. Mechanical Engineering Department, University of Texas at Arlington, Arlington, TX 76019
Abstract
The generalized analytical derivation presented here enables one to obtain solutions to the diffusion equation in complex heterogeneous geometries. A new method of constructing basis functions is introduced that preserves the continuity of temperature and heat flux throughout the domain, specifically at the boundary of each inclusion. A set of basis functions produced in this manner can be used in conjunction with the Green’s function derived through the Galerkin procedure to produce a useful solution method. A simple geometry is selected for comparison with the finite difference method. Numerical results obtained by this method are in excellent agreement with finite-difference data.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献