Affiliation:
1. Division of Thermo and Fluid Dynamics, Department of Mechanical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
Abstract
Abstract
In this study three-dimensional simulations of a stator vane passage flow have been performed using the v2¯−f turbulence model. Both an in-house code (CALC-BFC) and the commercial software FLUENT are used. The main objective is to investigate the v2¯−f model’s ability to predict the secondary fluid motion in the passage and its influence on the heat transfer to the end walls between two stator vanes. Results of two versions of the v2¯−f model are presented and compared to detailed mean flow field, turbulence, and heat transfer measurements. The performance of the v2¯−f model is also compared with other eddy-viscosity-based turbulence models, including a version of the v2¯−f model, available in FLUENT. The importance of preventing unphysical growth of turbulence kinetic energy in stator vane flows, here by use of the realizability constraint, is illustrated. It is also shown that the v2¯−f model predictions of the vane passage flow agree well with experiments and that, among the eddy-viscosity closures investigated, the v2¯−f model, in general, performs the best. Good agreement between the two different implementations of the v2¯−f model (CALC-BFC and FLUENT) was obtained.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献