Active Flow Control Utilizing an Adaptive Blade Geometry and an Extremum Seeking Algorithm at Periodically Transient Boundary Conditions

Author:

Werder Tobias1,Liebich Robert1,Neuhäuser Karl1,Behnsen Clara1,King Rudibert1

Affiliation:

1. Technische Universität Berlin, Berlin, Germany

Abstract

Abstract As a consequence of constant volume combustion in gas turbines pressure waves propagating upstream the main flow into the compressor system are generated leading to incidence variations. Numerical and experimental investigations of stator vanes have shown that Active Flow Control (AFC) by means of adaptive blade geometries is beneficial when such periodic incidence variations occur. A significant risk reduction in a compressor facing disturbances can thereby be achieved concerning stall or choke. Experimental investigations on such an AFC method with simultaneous application of a closed-loop control are missing in order to demonstrate its potential. This work investigates a linear compressor cascade that is equipped with a 3D-manufactured piezo adaptive blade structure. The utilized actuators are piezoelectric Macro-Fiber-Composites. A throttling device is positioned downstream the trailing edge plane to emulate an unsteady combustion process. Periodic transient throttling events with a frequency of up to 20 Hz cause incidence changes to the blade’s leading edge. Consequently, pressure fluctuations on the blade’s surface occur, having a significant impact on the pressure recovery downstream of the stator cascade. Experimental results of harmonically actuating the piezo adaptive blade with the corresponding disturbance frequency show that the impact of disturbances can be reduced to approx. 50 %. However, this is only effective if the phase shift of the harmonic actuation is adjusted correctly. Using an inadequate phase shift reverses the positive effects, causing the aforementioned stall, choke, or significant losses. In order to find the optimum phase shift, even under varying, possibly unpredictable operating conditions, an Extremum Seeking Controller is presented. This gradient-based approach is minimizing the pressure variance over time by carefully adjusting the phase shift of the harmonic actuation of the AFC system.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of vortex motion mechanism of synthetic jet in a cross flow;AIP Advances;2022-03-01

2. Grid resolution assessment method for hybrid RANS-LES in turbomachinery;Engineering Applications of Computational Fluid Mechanics;2022-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3