Uncertainty Quantification in Support of Severe Accident Analysis Code User Confidence Using MELCOR-DAKOTA

Author:

Boafo Emmanuel1,Numapau Gyamfi Emmanuel2

Affiliation:

1. National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O Box LG 80, Legon, Ghana

2. Ghana Institute of Management and Public Administration, P. O. Box AH50, Achimota, Accra, Ghana

Abstract

Abstract Uncertainty and Sensitivity analysis methods are often used in severe accident analysis for validating the complex physical models employed in the system codes that simulate such scenarios. This is necessitated by the large uncertainties associated with the physical models and boundary conditions employed to simulate severe accident scenarios. The input parameters are sampled within defined ranges based on assigned probability distribution functions (PDFs) for the required number of code runs/realizations using stochastic sampling techniques. Input parameter selection is based on their importance to the key FOM, which is determined by the parameter identification and ranking table (PIRT). Sensitivity analysis investigates the contribution of each uncertain input parameter to the uncertainty of the selected FOM. In this study, the integrated severe accident analysis code MELCOR was coupled with DAKOTA, an optimization and uncertainty quantification tool in order to investigate the effect of input parameter uncertainty on hydrogen generation. The methodology developed was applied to the Fukushima Daiichi unit 1 NPP accident scenario, which was modelled in another study. The results show that there is approximately 22.46% uncertainty in the amount of hydrogen generated as estimated by a single MELCOR run given uncertainty in selected input parameters. The sensitivity analysis results also reveal that MELCOR input parameters; COR_SC 1141(Melt flow rate per unit width at breakthrough candling) , COR_ZP (Porosity of fuel debris beds) and COR_EDR (Characteristic debris size in core region) contributed most significantly to the uncertainty in hydrogen generation.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3