Bone Remodeling Around Solid and Porous Interbody Cages in the Lumbar Spine

Author:

Talukdar Rahul Gautam1,Saviour Ceby Mullakkara2,Tiwarekar Kaustubh2,Dhara Santanu3,Gupta Sanjay2

Affiliation:

1. Advanced Technology Development Centre, Indian Institute of Technology Kharagpur , Kharagpur, West Bengal 721 302, India

2. Department of Mechanical Engineering, Indian Institute of Technology Kharagpur , Kharagpur, West Bengal 721 302, India

3. School of Medical Science and Technology, Indian Institute of Technology Kharagpur , Kharagpur, West Bengal 721 302, India

Abstract

Abstract Spinal fusion is an effective surgical treatment for intervertebral disk degeneration. However, the consequences of implantation with interbody cages on load transfer and bone remodeling in the vertebral bodies have scarcely been investigated. Using detailed three-dimensional models of an intact and implanted lumbar spine and the strain energy density based bone remodeling algorithm, this study aimed to investigate the evolutionary changes in distribution of bone density (ρ) around porous and solid interbody cages. Follower load technique and submodeling approach were employed to simulate applied loading conditions on the lumbar spine models. The study determined the relationship between mechanical properties and parametrical characteristics of porous body-centered-cubic (BCC) models, which corroborated well with Gibson-Ashby and exponential regression models. Variations in porosity affected the peri-prosthetic stress distributions and bone remodeling around the cages. In comparison to the solid cage, stresses and strains in the cancellous bone decreased with an increase in cage porosity; whereas the range of motion increased. For the solid cage, increase in bone density of 20–28% was predicted in the L4 inferior and L5 superior regions; whereas the model with 78% porosity exhibited a small 3–5% change in bone density. An overall increase of 9–14% bone density was predicted in the L4 and L5 vertebrae after remodeling for solid interbody cages, which may influence disk degeneration in the adjacent segment. In comparison to the solid cage, an interbody cage with 65-78% porosity could be a viable and promising alternative, provided sufficient mechanical strength is offered.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3