Transmission Mechanism Combining Self-Excited Vibrations and One-Way Clutches

Author:

Yonezawa Norio1,Tsuchiya Eiji1,Toyama Tomoyuki2,Mori Shigefumi2

Affiliation:

1. Toyota Central R&D Labs., Inc., Aichi 480-1192, Japan

2. AISIN Corporation, Aichi 448-8650, Japan

Abstract

Abstract We propose a new transmission mechanism that is compatible with high-speed downsizing motors. This mechanism adopts the “pulse drive transmission” (PDT) principle. Similar to the electrical switching converter, the PDT principle allows variable velocity ratios regardless of geometry (cf. the radius relationship is essential for the gear principle as the geometry). According to this similarity, the PDT principle is expected to maintain low inertia even at large velocity ratios and to increase the amount of transmitted power by the dependence of transfer frequency on rotational velocity. Thus, the PDT principle is suitable for high-speed motors. This study employed self-excited vibration in the PDT principle to eliminate the engagement controls that caused problems at high speed in a previous study. Simulations and prototype tests demonstrated that the proposed mechanism, combining self-excited vibrations by magnetic nonlinear springs and one-way clutches, achieves the desired behavior based on the PDT principle and is capable of power transmission at several velocity ratios and rotational speeds. In particular, performance evaluations under steady-state operations showed that the maximum input torque, maximum power transmission, and maximum efficiency were 20.9 ± 0.18 N m, 1.0 kW, and 79.8%, respectively.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3