Basin of Attraction and Limit Cycle Oscillation Amplitude of an Ankle-Hip Model of Balance on a Balance Board

Author:

Chumacero-Polanco Erik1,Yang James2

Affiliation:

1. Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409 e-mail:

2. Fellow ASME Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409 e-mail:

Abstract

The study of upright posture (UP) stability is of relevance to estimating risk of falls, especially among people with neuromuscular deficits. Several studies have addressed this problem from a system dynamic approach based on parameter bifurcation analyses, which provide the region of stability (RoS) and the delimiting bifurcation curves (usually Hopf and pitchfork) in some parameter-spaces. In contrast, our goal is to determine the effect of parameter changes on the size of the basin of attraction (BoA) of the UP equilibrium and the amplitude of the limit cycle oscillations (LCOs) emerging from the Hopf bifurcations (HBs). The BoA is an indicator of the ability of the UP to maintain balance without falling, while LCOs may explain the sway motion commonly observed during balancing. In this study, a three degree-of-freedom model for a human balancing on a balance board (BB) was developed. Analysis of the model revealed the BoAs and the amplitude of the LCOs. Results show that physical parameters (time-delays and feedback control gains) have a large impact on the size of the BoA and the amplitude of the LCOs. Particularly, the size of the BoA increases when balancing on a rigid surface and decreases when either proprioceptive or combined visual and vestibular (V&V) feedback gain is too high. With respect to the LCOs, it is shown that they emerge from both the subcritical and supercritical HBs and increase their amplitudes as some parameters vary.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference45 articles.

1. Preventing Falls in Elderly Persons;New Engl. J. Med.,2003

2. Prevalence, Circumstances and Consequences of Falls Among Community-Dwelling Older People: Results of the 2009 NSW Falls Prevention Baseline Survey;New South Wales Public Health Bull.,2011

3. Smith, V., 2016, “Basins of Attraction in Human Balance,” MSc. Thesis, Arizona State University, Tempe, AZ.

4. Dynamic Stability of a Human Standing on a Balance Board;J. Biomech.,2013

5. Vestibular Humanoid Postural Control;J. Physiol. Paris,2009

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3