Planning the Shortest Path in Cluttered Environments: A Review and a Planar Convex Hull-Based Approach

Author:

Masoudi Nafiseh1,Fadel Georges M.1,Wiecek Margaret M.2

Affiliation:

1. Department of Mechanical Engineering, Clemson University, Clemson, SC 29634

2. Department of Mathematical Sciences, Clemson University, Clemson, SC 29634

Abstract

Abstract Routing or path-planning is the problem of finding a collision-free and preferably shortest path in an environment usually scattered with polygonal or polyhedral obstacles. The geometric algorithms oftentimes tackle the problem by modeling the environment as a collision-free graph. Search algorithms such as Dijkstra’s can then be applied to find an optimal path on the created graph. Previously developed methods to construct the collision-free graph, without loss of generality, explore the entire workspace of the problem. For the single-source single-destination planning problems, this results in generating some unnecessary information that has little value and could increase the time complexity of the algorithm. In this paper, first a comprehensive review of the previous studies on the path-planning subject is presented. Next, an approach to address the planar problem based on the notion of convex hulls is introduced and its efficiency is tested on sample planar problems. The proposed algorithm focuses only on a portion of the workspace interacting with the straight line connecting the start and goal points. Hence, we are able to reduce the size of the roadmap while generating the exact globally optimal solution. Considering the worst case that all the obstacles in a planar workspace are intersecting, the algorithm yields a time complexity of O(n log(n/f)), with n being the total number of vertices and f being the number of obstacles. The computational complexity of the algorithm outperforms the previous attempts in reducing the size of the graph yet generates the exact solution.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference88 articles.

1. Robot Motion Planning

2. A Simple, But NP-Hard, Motion Planning Problem;Erickson,2013

3. The Traveling Salesman Problem;Flood;Oper. Res,1956

4. A Design Expert System for Auto-Routing of Ship Pipes;Kang;J. Sh. Prod.,1999

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3