Plastic Limit Analysis Using the Simplified Theory of Plastic Zones

Author:

Hübel Hartwig1

Affiliation:

1. Faculty of Architecture, Civil Engineering and Urban Planning, Brandenburg University of Technology, Lipezker Strasse 47, Cottbus D-03048, Germany

Abstract

Abstract The simplified theory of plastic zones (STPZ) was mainly developed to determine strain ranges and accumulated strains in the state of shakedown at cyclic loading between prescribed levels of loading. Kinematic hardening is an indispensable feature of the STPZ. The plastic limit load, however, is defined for monotonic loading and elastic–plastic material behavior without hardening. Simply assigning a zero value or a numerically very low value of the tangent modulus when applying the STPZ is generally not possible due to arising numerical instabilities. It is, therefore, not immediately obvious how the STPZ can be used to determine the maximum load level that can be applied to a structure without developing a kinematic mechanism. This paper describes the theory and the analysis steps required and provides some illustrative examples. Typically, between one and three linear elastic analyses and some local calculations are required to provide either the exact value or at least a reasonable estimate of a range of the plastic limit load, as well as of the associated stress and strain fields and displacements that are not provided by classical limit analysis.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference14 articles.

1. Simplified Theory of Plastic Zones for Cyclic Loading and Multilinear Hardening;Int. J. Pressure Vessels Piping,2015

2. Limit Loads of Mechanical Components and Structures Using the GLOSS R-Node Method;ASME J. Pressure Vessel Technol.,1992

3. The Elastic Compensation Method for Limit and Shakedown Analysis: A Review;J. Strain Anal. Eng. Des.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3