Windage Losses in High Speed Gears—Preliminary Experimental and Theoretical Results

Author:

Diab Y.1,Ville F.1,Velex P.1,Changenet C.2

Affiliation:

1. Contact and Solid Mechanics Laboratory, UMR CNRS 5514, INSA Lyon, France

2. Mechanical Engineering Department, ECAM, France

Abstract

Power losses in high-speed gears come from the friction between the teeth (sliding and rolling), the lubrication process (dip or jet lubrication), the pumping of a gas-lubricant mixture during the meshing and the losses associated with windage effects. The objective of this paper is to present a number of preliminary experimental and theoretical findings on the prediction of windage losses. Experiments were conducted on a test bench whose principle consists in driving a gear to a given speed and then measuring its deceleration once it has been disconnected from the motor. Results are presented for a disk and 4 different gears with no enclosure and in the absence of lubricant at speeds ranging from 0 to 12, 000 rpm. Two different theoretical approaches have been developed: i) a dimensional analysis based upon the dimensionless groups of terms which account for the flow characteristics (Reynolds number), the gear geometry (tooth number, pitch diameter, face width) and the speed, ii) a quasi-analytical model considering in detail the fluid flow on the gear faces and inside the teeth. It is found that both approaches give good results in comparison with the experimental evidence and two analytical formulas aimed at predicting windage losses in high-speed gears are proposed.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference11 articles.

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3