An Experimental Study of Self-Loosening of Bolted Joints

Author:

Jiang Yanyao1,Zhang Ming1,Park Tae-Won2,Lee Chu-Hwa3

Affiliation:

1. Mechanical Engineering, University of Nevada, Reno, NV 89557

2. Department of Precision Mechanics, Jeonju Technical College, Seoul, Korea

3. Advanced Engineering Center, Ford Motor Company, Dearborn, MI 48121

Abstract

The self-loosening process of a bolted joint consists of two distinct stages. The early stage of self-loosening is due to the cyclic plastic deformation of the materials. The second stage of self-loosening is characterized by the backing off of the nut. The current work is concentrated on an experimental investigation of the second stage self-loosening. Over one hundred bolted joints with M12×1.75 bolts and nuts were experimentally tested using a specially designed testing apparatus. The experiments mimicked two plates jointed by a bolt and a nut and were subjected to cyclic transverse shear loading. During an experiment, the relative displacement between the two clamped plates, denoted by δ, was a controlling parameter. For a given preload, the relationship between, Δδ/2, the amplitude of the relative displacement between the two clamped plates, and, NL, the number of loading cycles to loosening followed a pattern similar to a fatigue curve. There existed an endurance limit below which self-loosening would not persist. A larger preload resulted in a larger endurance limit. However, a large preload increased the possibility for the bolt to fail in fatigue. The results suggest that the use of a regular nut is superior to the use of a flange nut in terms of self-loosening resistance.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3