The Thermal Contact Conductance of Hard and Soft Coat Anodized Aluminum

Author:

Lambert M. A.1,Marotta E. E.1,Fletcher L. S.1

Affiliation:

1. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123

Abstract

An experimental investigation of the thermal contact conductance of anodized coatings, synthesized at different bath temperatures and in different electrolyte solutions, was performed, and the results were compared with previously published information. Electrolyte solutions of sulfuric acid at bath temperature of 7°C (Type III) and 25°C (Type II) and chromic acid at a bath temperature of 54°C (Type I) were used to grow coating thicknesses ranging from 3.2 to 61 μm (0.11 to 2.4 mil). Experimental thermal contact conductance data were obtained for a junction between anodized aluminum 6101-T6 and uncoated aluminum A356-T61 as a function of apparent contact pressure and anodized coating thickness. Apparent contact pressure ranged from 172 to 2760 kPa (25 to 400 psi) and the mean interface temperature was maintained at 40°C (104°F). The thermal contact conductance for the low-temperature sulfuric acid anodized (Type III) coatings varied from 300 to 13,000 W/m2 K, while the conductance of the room temperature sulfuric anodized (Type II) coatings varied between 100 to 3000 W/m2 K. The chromic acid (Type I) coatings yielded conductance values of 60 to 3000 W/m2 K. In general, the use of elevated temperatures for the anodizing bath will lead to lower surface microhardness and lower thermal contact conductance. The greatest conductance measurements were obtained for coatings grown in low-temperature sulfuric acid.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel Thermal Packaging Approach for an Airtight Electronic Chassis without Card Retainer-II;2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm);2023-05-30

2. THERMAL CONTACT CONDUCTANCE OF COATINGS AND FILMS;Proceeding of Heat and Mass Transfer Australasia;2023

3. Effects of Anodizing Conditions on Thermal Properties of Al 20XX Alloys for Aircraft;Symmetry;2021-03-08

4. The Effect of Wetting Gravity Regime on Shear Strength of SAC and Sn-Pb Solder Lap Joints;Journal of Materials Engineering and Performance;2017-08-16

5. Experimental investigation of thermal contact conductance for nominally flat metallic contact;Heat and Mass Transfer;2015-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3