Finite Element Solution and Dispersion Analysis for the Transient Structural Acoustics Problem

Author:

Abboud N. N.1,Pinsky P. M.1

Affiliation:

1. Department of Civil Engineering, Stanford University, Stanford, California 94305

Abstract

In this paper a finite element formulation is proposed for solution of the time-dependent coupled wave equation over an infinite fluid domain. The formulation is based on a finite computational fluid domain surrounding the structure and incorporates a sequence of boundary operators on the fluid truncation boundary. These operators are designed to minimize reflection of outgoing waves and are based on an asymptotic expansion of the exact solution for the time-dependent problem. The variational statement of the governing equations is developed from a Hamiltonian approach that is modified for nonconservative systems. The dispersive properties of finite element semidiscretizations of the three dimensional wave equation are examined. This analysis throws light on the performance of the finite element approximation over the entire range of wavenumbers and the effects of the order of interpolation, mass lumping, and direction of wave propagation are considered.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local absorbing boundaries of elliptical shape for scalar waves;Computer Methods in Applied Mechanics and Engineering;2004-11

2. Recent developments in finite element methods for structural acoustics;Archives of Computational Methods in Engineering;1996-06

3. Wave motion and its dispersive properties in a finite element model with distortional elements;Computers & Structures;1994-07

4. Finite and boundary element techniques in acoustics— A bibliography (1990–1992);Finite Elements in Analysis and Design;1994-01

5. Finite element dispersion analysis for the three-dimensional second-order scalar wave equation;International Journal for Numerical Methods in Engineering;1992-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3