Effect of Functionally Graded Materials on Resonances of Bending Shafts Under Time-Dependent Axial Loading

Author:

Mazzei Arnaldo J.1,Scott Richard A.2

Affiliation:

1. Department of Mechanical Engineering, C. S. Mott Engineering and Science Center, Kettering University, 1700 University Avenue, Flint, MI 48504

2. Department of Mechanical Engineering, University of Michigan, G044 W. E. Lay Automotive Laboratory, 1231 Beal Avenue, Ann Arbor, MI 48109

Abstract

The effect of functionally graded materials (FGMs) on resonances of bending shafts under time-dependent axial loading is investigated. The axial load is taken to be a sinusoidal function of time and the shaft is modeled via an Euler–Bernoulli beam approach (pin-pin boundary conditions). The axial load enters the formulation via a “buckling load type” approach. For generality, two distinct particulate models for the FGM are considered, namely, one involving power law variations and another based on a volume fraction approach, for both Young’s modulus and material density. The spatial dependence in the partial differential equation of motion is suppressed by utilizing Galerkin’s method with homogeneous beam mode shapes. To check the accuracy of this approximation, numerical solutions for the boundary value problem represented by the original partial differential equation are obtained using MAPLE®’s PDE solver. Good agreement (within 5%) was found between the PDE results and the one-mode approximation. The approximation leads to ordinary differential equations that have time-dependent coefficients and are prone to parametric and forced motions instabilities. Hill’s infinite determinant approach is used to study stability. The main focus is on the primary parametric resonance. It was found that in most cases the FGM shafts increase the parametric resonance frequencies substantially, while decreasing the zone thicknesses, both desirable trends. For instance, for an axial load about one-third of the buckling value, an aluminum/silicon carbide shaft, when compared to a pure aluminum shaft, increases the primary parametric resonance by 21% and decreases instabilities by 23%. For one model of FGM, the sensitivity of the results to volume fraction variations is examined and it was found that increasing the volume fraction is not uniformly beneficial. Results for other parametric zones are also presented. Forced resonances are also briefly treated.

Publisher

ASME International

Subject

General Engineering

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3