Mechanical Couplings of 3D Lattice Materials Discovered by Micropolar Elasticity and Geometric Symmetry

Author:

Cui Zhiming1,Yuan Zhihao1,Ju Jaehyung1

Affiliation:

1. Shanghai Jiao Tong University UM-SJTU Joint Institute, , Shanghai 200240 , China

Abstract

Abstract Similar to Poisson’s effect, mechanical coupling is a directional indirect response by a directional input loading. With the advance in manufacturing techniques of 3D complex geometry, architected materials with unit cells of finite volume rather than a point yield more degrees-of-freedom and foster exotic mechanical couplings such as axial–shear, axial–rotation, axial–bending, and axial–twisting. However, most structural materials have been built by the ad hoc design of mechanical couplings without theoretical support of elasticity, which does not provide general guidelines for mechanical couplings. Moreover, no comprehensive study of all the mechanical couplings of 3D lattices with symmetry operations has been undertaken. Therefore, we construct the decoupled micropolar elasticity tensor of 3D lattices to identify individual mechanical couplings correlated with the point groups. The decoupled micropolar elasticity tensors, classified with 32 point groups, provide 15 mechanical couplings for 3D lattices. Our findings help provide solid theoretical guidelines for the mechanical couplings of 3D structural materials with potential applications in various areas, including active metamaterials, sensors, actuators, elastic waveguides, and acoustics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Shanghai Jiao Tong University

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3