On Relevant Ramberg-Osgood Fit to Engineering Nonlinear Fracture Mechanics Analysis

Author:

Kim Yun-Jae1,Huh Nam-Su2,Kim Young-Jin2,Choi Young-Hwan3,Yang Jun-Seok4

Affiliation:

1. Department of Mechanical Engineering, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-701, Korea

2. SAFE Research Center, School of Mechanical Engineering, Sungkyunkwan University 300 Chunchun-dong, Jangan-gu, Suwon, Kyonggi-do 440-746, Korea

3. Korea Institute of Nuclear Safety, Yusung, Taejon, Korea

4. Korea Electric Power Research Institute, Yusung, Taejon, Korea

Abstract

The present paper proposes a robust method for the Ramberg-Osgood (R-O) fit to accurately estimate elastic-plastic J from the engineering fracture mechanics analysis based on deformation plasticity. The proposal is based on engineering stress-strain data to determine the R-O parameters, instead of true stress-strain data. Moreover, for practical applications, the method is given not only for the case when full stress-strain data are available but also for the case when only yield and tensile strengths are available. The reliability of the proposed method for the R-O fit is validated against detailed three-dimensional FE analyses for through-wall cracked pipes under global bending using five different materials, three stainless steels and two ferritic steels. Taking the FE J results based on incremental plasticity using actual stress-strain data as the reference, the FE J results based on deformation plasticity using various R-O fits are compared with reference J values. Comparisons show that the proposed R-O fit provides more accurate J values for all cases, compared to existing methods for the R-O fit. Advantages of the proposed R-O fit in practical applications are discussed, together with its accuracy.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3