Modeling Forced Convection in Finned Metal Foam Heat Sinks

Author:

DeGroot Christopher T.1,Straatman Anthony G.1,Betchen Lee J.1

Affiliation:

1. Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada

Abstract

Abstract A numerical study has been undertaken to explore the details of forced convection heat transfer in finned aluminum foam heat sinks. Calculations are made using a finite-volume computational fluid dynamics (CFD) code that solves for the flow and heat transfer in conjugate fluid/porous/solid domains. The results indicate that using unfinned blocks of porous aluminum results in low convective heat transfer due to the relatively low effective thermal conductivity of the porous aluminum. The addition of aluminum fins to the heat sink significantly enhances the heat transfer with only a moderate pressure drop penalty. The convective enhancement is maximized when thermal boundary layers between adjacent fins merge together and become nearly developed for much of the length of the heat sink. It is found that the heat transfer enhancement is due to increased heat entrainment into the aluminum foam by conduction. A model for the equivalent conductivity of the finned/foam heat sinks is developed using extended surface theory. This model is used to explain the heat transfer enhancement as an increase in equivalent conductivity of the device. The model is also shown to predict the heat transfer for various heat sink geometries based on a single CFD calculation to find the equivalent conductivity of the device. This model will find utility in characterizing heat sinks and in allowing for quick assessments of the effect of varying heat sink properties.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3