Modeling Dark and White Layer Formation on Elastohydrodynamically Lubricated Steel Surfaces by Thermomechanical Indentation or Abrasion by Metallic Particles

Author:

Nikas George K.1

Affiliation:

1. Mem. ASME KADMOS Engineering Ltd., 3 Princes Mews, Hounslow TW3 3RF, UK e-mail:

Abstract

In a series of publications, the author has shown that the passage of ductile microparticles through elastohydrodynamic (EHD) contacts results in frictional heating that can greatly affect surface damage. The thermoviscoplastic numerical model built for those studies is extended in the present article. A more rigorous analysis of dynamic (strain-rate) effects is performed and a new element of heating is introduced, namely, that owed to plastic work of the surfaces being indented. The model is then quantitatively validated against experimental data on soft and hard particles extruded in rolling and rolling–sliding contacts. It is also compared to past numerical predictions of the author. Following its validation, the model is further expanded to predict the formation of dark and white tribochemical layers of overtempered and untempered martensite, respectively, on steel surfaces, caused by the particle-induced frictional heating. Such layers are well-known in machining processes of hardened steels as being the result of phase transformations and play a critical role in contact fatigue. The debris model in this article is used to predict the layer thickness and relative hardness for a variety of operating conditions. Layers of micrometric thickness are typically found and graphic examples are presented, linking their location to that of debris dents. A parametric study examines the role of particle size and hardness, Coulomb friction coefficient, and contact rolling velocity on dark and white layer thickness and relative hardness. The layers are zones of great inhomogeneity and thermomechanical anisotropy, increasing the risk of spalling by delamination as they are potential sources of crack initiation, particularly in sliding contacts. However, white layers in particular may actually be beneficial to contact fatigue in rolling contacts because of their substantially increased hardness. The conclusion of the study is that debris-driven surface indentation and abrasion should no longer be viewed from a purely mechanistic or geometrical perspective but has to consider the tribochemical or microstructural-modification factor for the correct evaluation of the remaining useful life of a dented or abraded contact.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference126 articles.

1. A State-of-the-Art Review on the Effects of Particulate Contamination and Related Topics in Machine-Element Contacts;J. Eng. Tribol.,2010

2. Review of Studies on the Detrimental Effects of Solid Contaminants in Lubricated Machine Element Contacts,2009

3. Particles in New Motor Oils;Wear,1981

4. Ferrographic Examination of Unused Lubricants for Diesel Engines;Wear,1988

5. Dwyer-Joyce, R. S., 2004, “The Life Cycle of a Debris Particle,” Proceedings of the 31st Leeds-Lyon Symposium on Tribology, Leeds, UK. Sept. 7–10, Elsevier, Amsterdam, Vol. 48, pp. 681–690.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3