Affiliation:
1. Department of Aeronautics and Astronautics, Mechanical Engineering Division, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
Abstract
This paper proposes a system optimization method for product designs incorporating discrete design variables, in which hierarchical product optimization methodologies are constructed based on decomposition of characteristics and/or extraction of simpler characteristics from original characteristics. The method is constructed to take advantage of hierarchical optimization procedures, enabling the incorporation of discrete design variables. The proposed method can be applied to machine product designs that include discrete design variables such as material types, machining methods, standard material forms, and specifications. The optimizations begin at the lowest levels of the hierarchical optimization structure and proceed to the higher levels. Discrete design variables are efficiently selected and optimized in the form of small suboptimization problems at the lowest hierarchical levels, and optimum solutions for the entire problem are ultimately obtained using conventional mathematical programming methods. Practical optimization procedures for machine product optimization problems that include several types of discrete design variables are constructed, and applied examples are provided to demonstrate their effectiveness.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献