Thermoelastic Finite Element Analysis of Subsurface Cracking Due to Sliding Surface Traction

Author:

Cho S.-S.1,Komvopoulos K.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

A linear elastic fracture mechanics analysis of subsurface crack propagation in a half-space subjected to moving thermomechanical surface traction was performed using the finite element method. The effect of frictional heating at the sliding surface on the crack growth behavior is analyzed in terms of the coefficient of friction, crack length-to-depth ratio, and Peclet number. The crack propagation characteristics are interpreted in light of results for the directions and magnitudes of the maximum shear and tensile stress intensity factor ranges, respectively. It is shown that, while frictional heating exhibits a negligible effect on the crack propagation direction, it increases the in-plane crack growth rate and reduces the critical crack length at the onset of out-of-plane crack growth at the right tip due to the tensile mechanism (kink formation). The effect of frictional heating becomes more pronounced with increasing contact friction, crack length-to-depth ratio, and Peclet number. Crack mechanism maps showing the occurrence of opening, slip, and stick regions between the crack surfaces are presented for different values of crack length-to-depth ratio, coefficient of friction, and position of thermomechanical surface traction.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3