A Computational Model for Improving Weld Residual Stresses in Small Diameter Pipes by Induction Heating

Author:

Rybicki E. F.1,McGuire P. A.1

Affiliation:

1. Department of Mechanical Engineering, University of Tulsa, Tulsa, Okla. 74104

Abstract

Girth welding can produce tensile residual stresses on the pipe inner surface. Because tensile stresses enhance the possibility of stress corrosion cracking, methods for altering the weld-induced stress state are being investigated. One method, Induction Heating for Stress Improvement (IHSI), involves induction heating the pipe while cooling the inner surface. The method is being evaluated using both experimental and computational studies. This paper presents computational results of a 101.66-mm (4-in.) Schedule 80 stainless steel pipe. Results include comparisons of computed values for residual stresses with laboratory data. Computed values of residual stresses and laboratory data are in agreement and, for this case, clearly show that the IHSI process can change weld-induced tensile residual stresses to compressive values. A comparison of computational results for applying the IHSI process to a stress-free pipe and a welded pipe indicate that for geometry and process parameters considered here, the IHSI-induced compressive residual stresses on the pipe inner surface for these two cases are similar. The experimental results presented here show the feasibility of controlling weld-induced residual stresses. The computational results demonstrate a capability for predicting the observed stress behavior. The computational capability then provides an efficient tool to aid in developing ways for controlling residual stresses for other pipe sizes and weldment geometries.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3