Dimensionless Scaling Parameters During Thermal Flooding Process in Porous Media

Author:

Enamul Hossain M.1

Affiliation:

1. Professor Mem. ASME School of Mining and Geoscience, Department of Petroleum Engineering, Nazarbayev University, Astana 010000, Kazakhstan e-mails: ;

Abstract

The scaling concept is important, effective, and consistent in any application of science and engineering. Scaled physical models have inimitable advantages of finding all physical phenomena occurring in a specific process by transforming parameters into dimensionless numbers. This concept is applicable to thermal enhanced oil recovery (EOR) processes where continuous alteration (i.e., memory) of reservoir properties can be characterized by various dimensionless numbers. Memory is defined as the continuous time function or history dependency which leads to the nonlinearity and multiple solutions during modeling of the process. This study critically analyzed sets of dimensionless numbers proposed by Hossain and Abu-Khamsin in addition to Nusselt and Prandtl numbers. The numbers are also derived using inspectional and dimensional analysis (DA), while memory concept is used to develop some groups. In addition, this article presents relationships between different dimensionless numbers. Results show that proposed numbers are measures of thermal diffusivity and hydraulic diffusivity of a fluid in a porous media. This research confirms that the influence of total absolute thermal conductivities of the fluid and rock on the effective thermal conductivity of the fluid-saturated porous medium diminishes after a certain local Nusselt number of the system. Finally, the result confirms that the convective ability of the fluid-saturated porous medium is apparently more pronounced than its conductive ability. This study will help to better understand the modeling of the EOR process thus improving process design and performance prediction.

Funder

King Abdulaziz City for Science and Technology

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference56 articles.

1. Hele Shaw Cell Study of a New Approach to Instability Theory in Porous Media;J. Can. Pet. Technol.,1988

2. Development of New Scaling Criteria for a Fluid Flow Model With Memory;Adv. Sustainable Pet. Eng. Sci.,2011

3. Diffusion in Porous Layers With Memory;Geophys. J. Int.,2004

4. A Generalized Fractional Derivative Approach to Viscoelastic Material Properties Measurement;Appl. Math. Comput.,2005

5. A Generalized Groundwater Flow Equation Using the Concept of Non-Integer Order Derivatives;Water SA,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3