Optimizing a Functionally Graded Metal-Matrix Heat Sink Through Growth of a Constructal Tree of Convective Fins

Author:

Kephart Jacob1,Jones G. F.2

Affiliation:

1. Mem. ASME Naval Surface Warfare Center, Philadelphia Division, Philadelphia, PA 19112 e-mail:

2. Fellow ASME Department of Mechanical Engineering, Villanova University, Villanova, PA 19085 e-mail:

Abstract

Optimal material utilization in metal-matrix heat sink is investigated using constructal design (CD) in combination with fin theory to develop a constructal tree of optimally shaped convective fins. The structure is developed through systematic growth of constructs, consisting initially of a single convective fin enveloped in a convective medium. Increasingly complex convective fin structures are created and optimized at each level of complexity to determine optimal fin shapes, aspect ratios, and fin-base thickness ratios. One result of the optimized structures is a functional grading of porosity. The porosity increases as a function of distance from the heated surface in a manner ranging from linear to a power function of distance with exponent of about 2. The degree of nonlinearity in this distribution varies depending on the volume of the heat sink and average packing density and approaches a parabolic shape for large volume. For small volume, porosity approaches a linear function of distance. Thus, a parabolic (or least-material) fin shape at each construct level would not necessarily be optimal. Significant improvements in total heat transfer, up to 55% for the cases considered in this work, were observed when the fin shape is part of the optimization in a constructal tree of convective fins. The results of this work will lead to better understanding of the role played by the porosity distribution in a metal-matrix heat sink and may be applied to the analysis, optimization, and design of more effective heat sinks for electronics cooling and related areas.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forced Convection;Convection in Porous Media;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3