Affiliation:
1. Eindhoven University of Technology, Department of Biomedical Engineering, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Abstract
A finite-element approach was formulated, aimed at enabling an integrated study of mechanical and biochemical factors that control the functional development of tissue engineered constructs. A nonlinear biphasic displacement-velocity-pressure description was combined with adjective and diffusive solute transport, uptake and biosynthesis. To illustrate the approach we focused on the synthesis and transport of macromolecules under influence of fluid flow induced by cyclic compression. In order to produce net transport the effect of dispersion was investigated. An abstract representation of biosynthesis was employed, three cases were distinguished: Synthesis dependent on a limited small solute, synthesis dependent on a limited large solute and synthesis independent of solute transport. Results show that a dispersion model can account for augmented solute transport by cyclic compression and indicate the different sensitivity to loading that can be expected depending on the size of the limiting solute.
Subject
Physiology (medical),Biomedical Engineering
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献