An Investigation of Electrolytic Jet Polishing at High Current Densities

Author:

Cole Reno R.1,Hopenfeld Yoram1

Affiliation:

1. University of California, Los Angeles, Calif.

Abstract

A method of polishing metals by means of an electrolytic jet at extremely high current densities (to 1750 amps per sq in.) is described. Data are presented on the relation of polishing effect on various metals to current density and electrolyte flow rate for several electrolytes. An experimental method is described whereby the relationship of the above factors can be determined. It was found that all metals investigated could be polished at high enough current densities. Previous theories of electrolytic polishing are discussed and shown to not fully account for the process investigated. A modified theory to account for polishing at the high current densities observed is presented and is supported by mathematical analysis based on fundamental mass transfer considerations.

Publisher

ASME International

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrochemical Local Maskless Micro/Nanoscale Deposition, Dissolution, and Oxidation of Metals and Semiconductors (A Review);Russian Journal of Electrochemistry;2020-01

2. Electrochemical Machining;Springer Handbook of Electrochemical Energy;2017

3. Experimental investigations on electrochemical honing;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2008-03-01

4. Analysis of Roundness Error and Surface Roughness in the Electro Jet Drilling Process;Materials and Manufacturing Processes;2006-01-01

5. Analysis of hole quality characteristics in the electro jet drilling process;International Journal of Machine Tools and Manufacture;2005-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3