Experimental Investigation of Additional Loss Associated With Incoming Wakes in Low-Pressure Turbine Cascades

Author:

Kodama Hidekazu1,Funazaki Ken-ichi1

Affiliation:

1. Iwate University Department of Mechanical Engineering, , Morioka 020-8551 , Japan

Abstract

Abstract The present paper aims to experimentally investigate the influence of wake-passing frequency, Reynolds number, and suction surface diffusion rate on the additional loss due to incoming wakes to the profile loss in the low-pressure turbine (LPT) cascades and discuss a design guide for reducing the additional loss. Using a moving-bar mechanism, the unsteady effects of incoming wakes were measured in a low-speed linear turbine cascade facility. The wake-passing frequency was varied by adjusting the moving-bar speed. The different airfoils with different surface velocity distributions were tested to examine the effect of suction surface diffusion rate. For each test case in an unsteady flow condition, the additional loss due to incoming wakes was derived by subtracting the profile loss from the measured total pressure loss across the cascade. Here, the profile loss was estimated by using the friction drag force, which was calculated by the measured surface velocity distribution, and the pressure drag force, which was calculated by the measured surface pressure distribution and the predicted base pressure. The resultant additional loss includes all kinds of losses associated with incoming wakes, such as mixing loss of incoming wakes enhanced in the blade passage and unsteady interaction loss between incoming wakes and surface boundary layers. It was demonstrated that in an unsteady flow condition, a substantial performance improvement was obtained in the entire Reynolds number range by applying the surface velocity distribution with no laminar separation to a low-solidity blade row.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3